RISC-V芯片开源是手段不是目的 如何搭建自主生态是关键
发布时间:2022-08-13 09:37:28 浏览次数:1560
RISC-V芯片开源是手段不是目的 如何搭建自主生态是关键
来源:华强
RISC-V
芯片
开源
作为芯片设计发展的后起之秀RISC-V近几年发展迅猛,这归结于开源的RISC-V会释放企业、高校IC设计的极大潜能。截至到9月统计的数据,国际RISC-V基金会已发展到70多个国家2000多个会员,而中国RISC-V产业联盟已经有140多家成员。国际RISC-V基金会不但包括谷歌、三星、英伟达、IBM、华为、高通和西部数据等互联网和半导体巨头,还有阿里、中天微、芯原、晶心、芯来等IC 设计和服务公司,以及UC-伯克利、普林斯顿、清华和中科院计算所等高校和科研机构。同时RISC-V的出现为中国芯片产业实现自主、可控和繁荣带来了无限希望,当然,芯片产业远不是解决IP core就可以了。加工制造方面的考验更大,自主研发不仅仅是情怀,还是关键时候能力挽狂澜。目前比较适合RISC-V使用的领域还是对于生态依赖比较小的深嵌入式或者新兴的IoT、边缘计算、人工智能领域。指令集的重要性体现在生态建设上,指令集向上承载的是整个软件生态,向下则规范了以处理器芯片为代表的整个硬件生态。定义一个新指令集本身并不是一件难事,但更重要的是如何能吸引整个业界乃至全世界一起来共同建设生态,这需要一种开放共享的理念作为基底。那么芯片应该被开源吗?未来几年内RISC-V将在哪些应用领域率先起量?如何完善RISC-V开源软件生态,以加速RISC-V芯片落地?围绕以上业界关注的问题,在12月17日,由中国RISC-V产业联盟(CRVIC)、芯原股份和上海集成电路产业集群发展促进机构共同主办的首届滴水湖中国RISC-V产业论坛上,中国RISC-V产业联盟理事长、芯原股份董事长戴伟民,红帽软件傅炜,工信部绿色计算产业联盟CTO 郭晶,北京晶视智能COO黄群辉,博流智能营销副总裁刘占领,平头哥半导体副总裁孟建熠,芯来科技CEO 彭剑英,赛昉科技CEO 徐滔、成都启英泰伦科技副总裁张来等来自RISC-V领域领先的三大IP供应商的高层领导,还有在开源软件和生态领域负有盛名的机构的专家,展开了深入探讨。芯片应该开源吗?开源只是手段不是目的RISC-V的初衷是易实施、高效可扩展,可以与他人分享不受限制。指令集就是你的字典,开放指令集不是开放硬件,是个“字典开源”。有很多人认为RISC-V开源了就能用它免费做芯片,开源指系统内部代码完全开放,用户可以按照需求更改或添加相应功能;而开放指提供标准化环境的基础平台,允许不同功能和不同开发商的软、硬件模块介入。戴伟民用一张图展示了用开源软件的理念,去做开源硬件的构想。开源软件的做法是90%代码开源,用户写只写10%定制代码。硬件如果也90%开源,用户只做10%定制芯片就出来了。我们进入了后手机、后电脑的碎片化时代,这样的理念可行吗?能真正透过RISC-V的开源易用等特性为实现芯片的自主可控与创新繁荣带来新的希望吗?论坛首先就大家关注的就是芯片的开源与开放的问题进行探讨,那么芯片应该开源吗?赛昉科技CEO徐滔认为开源从来不是目的只是一种手段,开源是一种商业模式。软件开源很成功,因为通过软件开源很多公司获得了实质性的利益。比如:大家可以放在一起做共性工作、可以推出服务,或者软件开源可以卖IP、卖芯片,这个都可以。硬件开源有一个问题要问:“我开源了以后,谁得利了?谁真正有这个驱动力去推动这个硬件开源?”平头哥半导体副总裁孟建熠也认为“开源”其实是个手段,它不是个目的。芯片开源从今天的角度来讲还为时过早,但也有两点好处:一是从学校、研究所培养学生的开发创新角度来看是非常好的。比如我跟复旦大学的一个教授课题组合作开发AI加速器,纯做加速器学生做完以后没有感觉,所以需要放到一个平台,我们就给了他RISC-V平台、处理器和一些基础软件,学生们做完模块之后集成进去连到网上,就可以跟互联网平台“下棋的软件”应用了。第二个比较有价值的,可能我们要看到一个方向。今天硬件走到这个地方,可能需要更多的跟算法迭代。所以软硬件算法打通之后,其实会带来更大的一个效能发挥。芯来科技CEO 彭剑英表示,RISC-V就像跟WiFi、蓝牙一样,开放的目的是希望把RISC-V变成一个国际标准。你读懂这个标准,并不一定意味着你可以实现RISC-V CPU。对于我们做处理器、特别是做IP的来讲,在“开源”和“开放”这个问题上不纯粹是一个技术问题。芯来的早期其实就有做一个开源的Core,很多人可以拿这个去做教学用。我们也曾经跟学校、老师、爱好者众筹去“流片”、去做一些尝试,其实学生在中间还是有很多的收获。我们现在是一个商业公司,也有很多商业客户买我们的N200、300、900。技术其实没有界限,更多的是一种商业模式。芯片的产业链其实是很长的,并不是说一个指令集的开源或者一个处理器的开源,就可以解决“开源芯片”的问题。更多的应该是提供商业成熟的IP或者成熟的设计方法、平台,可以去快速的帮助客户做芯片的迭代。但是我们在科研、教学、生态推广上,那是另外一种思路。现场150名参会者与线上的嘉宾也踊跃参与此部分话题的投票,表达了自己的观点,以下是投票结果。总之,在现阶段来看,开源只是芯片开发的一种手段,不是目的。硬件开源和软件开源不一样,对于学校人才培养、科研创新等有一定的价值,但从商业模式来看,要实现芯片自主创新和产业繁荣,并不是芯片开源就能解决问题。从业者目前更多的应该是提供商业成熟的IP或者成熟的设计方法、平台,可以去快速的帮助客户做芯片的迭代。RISC-V将在哪些应用领域优先起量?今天,RISC-V 在嵌入式和物联网开发与应用正在趋于成熟。我们也看到RISC-V 创业公司普遍规模不大,但不乏具备市场和技术领导地位的头部企业。虽然很多人看好RISC-V在IoT领域的应用,但IoT场景因为很碎片化,在技术层面很难产生标杆性事件,“碎片化是用不同的方法做同样的事情,多样化是解决不同的问题。”戴伟民在论坛上表示。三年之内,RISC-V将在哪些应用领域优先起量?从现场及线上参会嘉宾的投票结果来看,大家认为最先起量的前3个市场分别是小家电产品、可穿戴设备及智慧摄像头/监控。为什么是这样的结果呢?嘉宾也给出了自己的看法。博流智能营销副总裁刘占领认为这个问题谈的是RISC-V渗透率的问题,从“渗透”的维度来讲:我认为它要想快速起量有三个条件很重要。第一,产业链条越短越容易可控。也就是需要生态的涉及面越少,它越容易可控起量。第二点,就是要从客户的维度看性价比。客户为什么关注RISC-V,无非是便宜好用。所以我认为它是在对于性价比比较在乎的市场最容易起来,我们通盘看一下哪些市场容易对性价比有一些极致追求呢?小家电、可穿戴设备、还有一些低端摄象头。客户需要更具性价比的产品出来替代当前的这些成本比较高的产品。第三点,从“易用性”。比如:原来用ARM怎么快速移植?从这个维度来讲,我认为产品基础段位越低越容易实现起量。再加上IP厂家完整的工具链,比如:平头哥他们做了很多。这些工具链是对整个RISC-V生态,都能够有效产生协同效果的这些工具、编译环境等等。所以我认为在技术需求偏低的RTOS系列会起来,所以将性价比、RTOS、短的产业链三个融合,就能得出未来几年RISC-V渗透率的结果。北京晶视智能COO黄群辉认为如果是从个体的“量”来看,整个市场容量越大机会也就越大。穿戴式跟小家电这两个产品,是非常适合RISC-V场景应用率先起量的。因为它的系统相对会比较封闭,没有那么多基于RISC-V生态的问题。完善开源软件生态是RISC-V发展关键可以看到,目前比较适合RISC-V使用的领域还是对于生态依赖比较小的深嵌入式或者新兴的IoT或者新兴的IoT、边缘计算、人工智能领域。指令集的重要性体现在生态建设上,如何完善RISC-V开源软件生态,以加速RISC-V芯片落地是当务之急。从与会者的投票结果来看,排在前三位的诉求分别是:1、加大硬件开发板、软件开发环境、开发工具的支持;2、重视中小型企业、个人开发者的需求和贡献;3、构建良好的上传与分享氛围/机制。对此,工信部绿色计算产业联盟CTO 郭晶从生态运营和商业模式角度,跟大家做一些分享跟探讨。谈到开源生态的产业,我认为有两个主要的角色:一类,开源生态的搭建者。另外一类,开源生态的使用者、同时也是开源生态的参与者、伙伴。先谈一谈后者。从中国过去十年ICD半导体发展来看,形成一批以OEM和互联网出身为代表的两类团队非常深入参与开源生态、已经获得一定的成果。最典型的案例,比如华为。我们其实可以看得到华为过去十年投入了大量的人财物参与到国际开源社区跟组织当中,才有今天的鸿蒙等。过去几年里Linaro在底层软硬件的开放平台和工具搭建、以及针对Linux内核的持续维护、更新这一块,对于华为今天的成果其实是起到了非常重要的核心能力的推进,所以其实即便是今天华为已经取得了一定的成果、它其实还是需要强依赖和捆绑更中立的开源社区和机构持续做对代码的维护和更新。再说回到怎样的一个生态去搭建?除了纯粹的靠产业方、厂商资助,除了纯粹靠国家队、政府滋养之外,我们需要有自我造血功能,甚至要有长久的商业价值。在这一部分,我觉得其实我们借助从西方去引进、吸收、消化兼顾这两个方向,需要找到更适合自己、更适合中国、更接地气的方式。说到第一个方式:我们必须得承认,我们需要去开发、维护所有生态参与方共同的重复性的标准化的需求。这里主要是针对面向SoC跟操作系统底层DSP软硬件平台、工具搭建,以及维护。这一部分也是各个厂商、尤其是核心厂商需要长期培养的基础软硬件能力和核心能力,也需要各方真正的投入人财物。“人”就是每家都应该投入一定的工程力量去做协同开发,大家也要一定程度上掏出费用或者协商好由统一的资助方资助这样的专业运营和独立的团队,物就是大家也要拿出自己的芯片、平台和模块板子参与到协同开发、以及集中性的验证和测试,所以这件事情也就是为什么十年前诞生出非常特别的Linaro这样一个生态公司、由几家非常知名的代表性的国际先进芯片公司做下来。因为他们在当时十年前已经遭遇到了ARM生态碎片化痛点,大家一起做下来、求同存异、排出各自的CTO和首席架构师共同探讨,这一点我觉得我们完全可以吸收的。怎么样寻找自我造血和长期的商业价值呢?郭晶认为商业化的开源公司,怎么去把握软件功能一定的开源比例去对于今后你的商业化运作其实是非常有讲究,这也就回到“开源和开放的比例”。针对某个强技术功能做深度定制化服务,这也是走商业化路径可以思考的一个方向。从长远来看RISC-V架构在性能、成本和易用性方面都不逊色于x86和Arm,RISC-V要真正发展起来,不仅要在目前的IoT等市场打好基础,更应该着眼汽车、AI等新兴的应用领域,基于RISC-V的通用型和定制化MCU将有更大的发挥空间。不是大家在价格上竞争,而是针对不同应用和细分市场的定制化开发和服务。这样才能逐渐构建起RISC-V的生态,更快地实现产业化落地的可行策略。
-
- 新手指南
-
- 售后服务
-
- 客服中心
-
- 关于我们
-
- 方案设计
-
- 商家合作
-
- 行业资讯
-
- 哪里采购 TLP5754 东芝(TOSHIBA)?
- 哪里可以采购低价 [TOSHIBA] TC74HC4052AFT(EL) ?
- 最新!Microchip:订单暴增,交期延长至54周
- 芯片大缺货!福特德国厂停工1个月,奥迪超1万名员工放无薪假
- 环球晶:收购世创最低比例降15% 收购时间延长至2月10日
- Microchip
- Qorvo推出业界领先的低噪声系数LNA,支持5G基站部署
- 高通宣布推出性能强劲的骁龙8705G移动平台
- TI推出业界领先的无线BMS解决方案,革新电动汽车电池管理
- 意法半导体公布2020年第四季度初步营收
- 纳维科技将在苏州打造国际前三的氮化镓单晶衬底研发基地
- 华为消费者业务CEO余承东或将负责华为云与计算BG
- 2020年半导体设备全球销售额将创新高
- 台积电或许成为韩国车用芯片缺口的唯一希望
- 今年全球半导体产值上达4760亿美元,复苏势头十分强劲
- 芯片缺货问题至今不容乐观
- 多家台湾MCU厂商再次宣布调涨价格
- 芯片原厂如何应对产能紧缺客户恐慌性备货
- 工信部释出两大信号:国家将大力扶持芯片产业,加强全球供应链合作
- 芯片网获悉芯片电阻、MLCC再传涨价
- Microchip如何设计IoMT连接和安全功能
- Microchip正在加大力度开发下一代汽车电子元件
- 东芝TOSHIBA推出全新SiC MOSFET,大大提升工业设备效率和小型化
- Microchip推出IEEE® 802.3bt 以太网供电USB Type-C®电源和数据适配器
- 探测距离38.5米,我国刷新毫米波芯片世界纪录!
- Microchip:如何设计IoMT连接和安全功能
- 东芝推出采用TOLL封装的650V超级结功率MOSFET
- NUST MISIS发明出新材料 可使锂离子电池的容量增加三倍
- 东芝650V超级结功率MOSFET问市,提高大电流设备效率
- 意法半导体推出具有更高性能和先进网络安全功能的STM32U5超低功耗微控制器
- 东芝推出更高时钟速率的缩影镜头型CCD线性图像传感器
- 高保真级音质,ST车规级音频D类放大器问市
- 华为展示729个不同领域专利,厉害了华为
- 全球芯片代工今年设备支出同比增长23%,达到320亿美元
- 打造“芯”高地 多地积极绘制集成电路高质量发展路径图
- 华为发布全球首款5G基站芯片天罡TIANGANG
- 中兴通讯称对缺芯已提前储备
- 地平线“征程5”芯片明年量产算力翻倍
- 百度昆仑芯片已完成融资,为自主研发的云端AI通用芯片
- 低功耗TCXO晶振可大幅提高物联网电池寿命
- 各类芯片交期表
- 卓胜微拟35亿元投建芯卓半导体产业化建设项目
- 消息称台积电12B厂传火警,元件异常启动灭火系统
- 中芯国际发布2020财报 营收重点依旧是成熟工艺
- LED芯片产能紧张:订单排至下半年 部分产品价格已上涨
- 28nm奥秘:中芯国际“留神”,缺芯涨价与重复下单
- Arm推出Arm v9架构 面向人工智能、安全和专用计算的未来
- 意法半导体和OQmented联合研制、销售先进的MEMS微镜激光束扫描解决方案
- 国内IC芯片半导体产业链
- TI首款具有集成式有源EMI滤波器的先进直流/直流控制器发布
- 技术短缺、产线不足或盲目扩充都是危机
- 2021年中国靶材行业市场现状及发展前景
- Microchip发布世界首款PCI Express 5.0交换机
- 半导体设备成产能最大掣肘?三星电子高管登门求货
- 全球汽车产业遭受缺“芯”之痛 芯片产业博弈将加剧
- Microchip发布新型以太网PHY, 支持多分叉总线架构,可增强工业网络的可扩展性和功能
- 监管严查汽车芯片价格哄抬,芯片荒何时缓解?
- 高通拟逾40亿美元收购瑞典汽车技术公司 剑指自动驾驶
- 中部“水荒” 台积电或将在台南开建新工厂
- 大陆晶圆代工厂明年产能将优先供应给当地IC设计厂
- 既缺芯又缺人!全球最大机械公司卡特彼勒或将被迫提价
- 汽车芯片全球紧缺 我国1-8月份汽车出口额实现翻倍
- 中国大陆晶圆产能或将首次超越日本
- 致力于研发5G射频高性能芯片 力通通信获近2亿元新一轮融资
- IDC公布2021Q2全球服务器最新数据:浪潮市占率排名全球第二
- 工信部:加强车联网网络安全和数据安全工作
- 第三代半导体赛道受资本青睐 深圳基本半导体完成C1轮融资
- 日媒:日美澳印将建半导体供应链
- 英特尔宣布两座芯片工厂即将开建
- 8月北美半导体设备出货终止八连升
- 1000亿美元大关?今年全球代工市场或将首次突破
- 国产MCU股价暴涨背后!多少掩不住的辛酸?
- 需求旺盛叠加国产替代提速:国内MLCC厂商将迎大爆发
- Vishay推出先进的30 V N沟道MOSFET,进一步提升功率密度和能效
- Vayyar推出首款多射程XRR芯片 专为ADAS、ARAS和自动驾驶设计
- C&K针对高可靠性应用推出单刀双掷轻触开关
- ADI高精度高速DAQ μModule®可实现更小的解决方案尺寸并缩短上市时间
- UnitedSiC宣布推出六款新型D2PAK-7L碳化硅FET
- 新日本无线最新推出一款应对USB PD快充的升降压型DCDC转换器
- Vishay推出的高精度薄膜片式电阻有极高稳定性和极低噪音
- Allegro 新型3DMAG磁性位置传感器支持下一代ADAS应用
- 瑞萨电子推出入门级MPU RZ/V2L
- Diodes 公司的 USB Type-C及线性ReDriver讯号中继器提供更强大性能
- 意法半导体发布MasterGaN参考设计演示250W无散热器谐振变换器
- Maxim 发布伺服控制器/驱动器模块,为自动化设备提速降耗
- 芯片再涨价热潮:6月1日起ST产品线价格全面上调
- 从芯片大缺货看元器件电商发展
- 三星电机扩大半导体封装基板 目标全球第三
- 狂砸456亿!127起半导体融资事件背后,IDM成“吸金王”
- RISC-V芯片开源是手段不是目的 如何搭建自主生态是关键
- 首颗7nm AI芯片有多强?寒武纪点燃“新芯”之火
- 华为互补、沐曦替代,国产GPU芯片傍上三巨头?
- 汽车缺芯扩大讽刺国产替代,高利润先行“本田飞度”躺枪?
- 5nm芯片功耗集体“翻车”,三星台积电谁来背这“锅”?
- 中微半导体再投2家芯片设备商,国产替代下的饥不择食?
- “超速追量”的工业半导体,无可限量的ST!
- 15亿艾派克!大基金频出“金手指”,芯片上游+初创为今年重点
- 5.6亿交易电源芯片业务 英特尔“向左”、联发科“向右”
- 兆易创新增资睿力集成 强强联合背后国产DRAM的挣扎
- 高通骁龙“888”暗喻中国定制,华为三星荣耀为何不捧场?
- IC行业巨震!美国或制裁艾睿亚太,恐带来“连锁效应”?
- 华为一年投资17家芯片企业!“探底拓车”卖荣耀不为美国?
- 快充芯片严重短缺,iPhone 12也要被“断供”?
- 半导体利润增长集中在“封测”,挽救摩尔定律的最后筹码?
- 以“生态+可靠”筑根基 小家电MCU的国产替代“野望”
- 国内首个“芯片大学”板上钉钉 人才焦虑下的“曲线救国”?
- 三星为中国定制安卓最强芯片,跑分强大就能充当“旗舰”?
- “危机共生”时代,半导体国产替代究竟该怎么“替”?
- 小家电的“快消品”赛道 MCU厂商究竟该怎么跑?
- 美或开放芯片厂向华为供货,真“肉疼”还是假惺惺?
- 半年股价翻10倍!蔚来要自研芯片是“膨胀”了吗?
- 国产替代困难重重,高端光芯片如何突破?
- NDT为什么能“称霸”压力传感市场?
- IoT芯片究竟如何实现“永久续航”?
- 提价50%!中芯“恐慌效应”或将改变晶圆代工格局
- 芯片禁令“大限已至”,鸿蒙2.0开源或是华为“角色转变”的开始
- AMD或成首家获准供货华为芯片商
- 产能满载加价也要抢?晶圆代工10年来最牛市的幕后推手
- 以“工业+医疗”IoT为基 自连电子究竟有多大“野心”?
- 物联网系统可信任的“根”——揭秘英飞凌最新安全芯片解决方案
- 9月底或断供!癫狂禁令将如何改写中芯命运?
- 首发5nm就这水平?A14性能保守背后还隐藏着什么
- 英伟达因“壕”吸引软银根本?揭露ARM难出售的阴谋论!
- 紫光集团全产业链导入广州,为广东芯片行业注入新动力
- 存储芯片持续降价:有SSD存储器价格直接腰斩
- 市场趋势:中国半导体制造业的本土化程度持续提高
- 关于参加2022中国国际消费电子博览会的通知
- SEMI预计2025年全球300mm半导体晶圆厂产能将创新高!
- 深圳国际移动消费电子及科技创新展览会顺利举行
- 重磅!兆易创新首款车规级MCU来了
- 2022意法半导体工业峰会11月激发智能,持续创新!
- 北京首条MEMS芯片生产线投产
- 印度也想成为芯片强国:从吸引外国科技巨擘开始
- 安森美公布破纪录2022年第3季度业绩
- 安森美推出ecoSpin系列,重新定义无刷直流电机控制
- 核心板应用开发遇到电磁兼容问题怎么办?
- 安森美推出ecoSpin系列,重新定义无刷直流电机控制
- 意法半导体完整的技术平台获得行业认证,整合嵌入式安全单元和超低功耗通用微控制器,具有经济、强大的安全保护功能
- PLC编程:以Siemens产品为实例的技术总结
- 生物识别与IoT板块“齐头并进” 千亿市值的汇顶能否延续辉煌?
- 安防领域还在用消费级存储产品?西部数据教你如何节省成本
- 从50%到98.5%:Vicor电源技术为何能登顶“全球第一”?
- 5G催生新应用 未来VCSEL技术发展有哪些趋势?
- 小而美二十亿美元市场 ArF、EUV光刻胶成未来发展趋势
- 芯片断供! 患上被害妄想症的美国还能领先多久?
- 它来了!Lexar雷克沙全新IP小鲨携三款新品正式登场!
- 生产环境影响机器视觉检测 人工智能深度学习仍需改进
- VCSEL国产厂商后起直追 突破欧美日 “包围圈”
- 结构光辅助机器视觉收集3D信息 借助云计算快速建模
- 千万级年出货量!首家打进变频空调主控的MCU厂商,如何成功实现国产替代?
- 工艺制程彻底失守!三星启动3nm真能扳倒台积电?
- 选择智能门锁大品牌 将有效避免小黑盒事件再次发生
- 2019年终盘点:挣脱算力桎梏,国产AI爆发“芯”力量!
- 行业产品参差不齐 致使消费者对智能门锁信任不足
- BAW/FBAR滤波器工艺难度高 国产化向中高端迈进
- 架构存储优先OR存算一体:主流市场终将作何选择?
- 摄像头行情持续“爆炸”!下一个市场“爆点”究竟在哪儿?
- 存储和算力矛盾日益“激化” 架构创新成AI安防“芯”唯一出路
- “没有竞品”?紫光展锐AIoT解决方案到底有什么“大招”
- BAW/FBAR高频优势凸显 将与SAW齐头并进
- 射频前端前景大好 头部企业纷纷加强布局
- 5G、AI、物联网谁主沉浮?一文回顾2019年半导体行业十大并购事件
- 中国芯:设计与应用创新并举 生态力量见证商业价值
- ANC降噪芯片本土企业PK国际大厂:专利是绕不开的大“门槛”
- 车联网将激活自动驾驶产业链 运营竞争激烈商业模式有待探索
- Wi-Fi 6商用节奏很快 将在不同应用场景中演变
- 日系OLED企业杀入中韩面板之争 谁给他们的底气?
- ETC改造已先行,RSU是最大增量市场
- 2019中国(珠海)集成电路产业高峰论坛成功举办,探索地方产业发展“芯”动力
- 用算法打败像素!苹果收购的这家公司有多狠?
- 为什么中国市场需要更“接地气”的MCU?
- 软硬结合与数据驱动解决声纹识别两大痛点
- 国外破产,国内量产:激光雷达“冰火两重天”的2022年
- 东芝推出有助于减小贴装面积的智能功率器件
- 艾迈斯欧司朗推出新款256通道ADC,帮助高性能CT探测器降功耗、简化设计
- TDK推出超紧凑型焊片型铝电解电容,纹波电流能力提高了85%
- 硬件光追进入新阶段,Imagination推出DXT系列GPU IP
- 波及芯片行业!欧盟拟立法禁止使用“永久化学品”
- 日本效法欧美补贴本土半导体产业 目标不仅仅是尖端产品
- 格罗方德和通用汽车在美国签署生产半导体芯片长期供应协议
- 国家能源局:围绕构建新型能源体系,大力推动可再生能源重大工程
- 中半协严正声明!涉美日荷限制向中国出口协议
- 最新!国内模拟芯片市场规模将超3000亿元
- 最新!广州提升车规芯片和核心零部件的近地化率
- MLCC涨价迷雾乍现 “炒作”之下静观其变
- 美新半导体发布新款AMR地磁传感器MMC5616WA,全新升级,满足丰富的应用场景
- 重磅!欧盟拟对俄罗斯实施第十轮制裁,涉及47种电子元件
- 中国芯片现状
- 中国芯片能做到多少nm
- 中国芯片制造最新消息
- 中国光刻机制造最新消息
- 芯片报价网站
- 芯片市场行情现状
- 韩国芯片公司投资中国?韩媒:美国考虑放松!
- 中芯国际一季度净利润同比大跌44%!刘训峰博士出任副董事长!
- Nexperia首创交互式数据手册,助力工程师随时随地分析MOSFET行为
- 日本加强本国半导体生产 将补贴美光15亿美元生产下一代芯片
- 安森美公布收入增长战略计划,预期达到半导体行业平均增速的三倍
- 打响第一枪,智能座舱芯片国产意味啥?
- UDE2023第四届国际半导体显示博览会将于今年7月份举行
- 1nm芯片是制造的极限吗?
-
- 配送方式
-
- 特别说明
-
- 订单信息
-
-
- 最新报价
-
- 产品资料
-
- 11AA160T-I/TT存储器产品详细资料
- GY-213V-SHT21 高精度 温湿度 传感器模块
- Microchip推出新型电流检测放大器 可提供汽车高温部件的准确测量
- Microchip推出首款适用于CAN FD网络的8位单片机系列产品
- 芯片命名规则
- MICROCHIP 直流无刷电机应用笔记及源代码介绍
- MICROCHIP公司的芯片资料大全
- Microchip最新料号命名规则
- 从器件选型到设计开发,一文读懂Microchip的FPGA!
- Microchip ATSAMD21-XPRO 评估套件 MCU32 Tools
- Microchip 微芯 PG164140 / MPLAB PICkit 4在线调试器
- Microchip发布首款用于大型超宽触摸屏的车用单芯片解决方案
- 电子元件识别大全
- RHRP1560规格参数_中文规格书
- MICRF112YMM-TR规格参数_中文规格书
- 多谐振荡器都有哪些构成呢?多谐振荡器构成介绍
- 电子元器件分类
- Silicon Labs和涂鸦智能携手为物联网应用提供性能强大的Sub-GHz解决方案
- RHRG30120中文资料_PDF数据手册_参数_引脚图_图片
- 安森美RHRP8120多少钱
- 微芯SST25VF040B-50-4I-S2AF-T多少钱
- MC74ACT244DTR2G多少钱
- RHRP3060多少钱
- 原装正品安森美UC2843BD1R2G市场价格
- 原装正品微芯MICRF112YMM-TR市场价格
- 原装正品微芯射频接收器MICRF219AAYQS-TR市场价格
- 原装正品微芯微芯 无线收发芯片MICRF113YM6-TR市场价格
- Microchip高度集成线性电池充电器
- Powerbox宣布推出功率为700W的最优传导冷却电源
- 电导率控制器
- 美国微芯MCP9808T-E/MS现货供应
- microchip美国微芯MICRF211AYQS-TR产品规格书pdf
- Intersil英特矽尔EL7536IYZ-T13产品规格书pdf
- MICROCHIP美国微芯TC4424AVPA产品规格书pdf
- MICROCHIP美国微芯ATTINY24A-SSU产品规格书pdf
- TOSHIBA东芝TLP5754(TP,E(T产品规格书pdf
- TC74HC4052AFT(EL)东芝toshiba产品规格书pdf
- TC7WB66CFK,LF东芝TOSHIBA产品规格书pdf
- 东芝74LCX541FT(AJ)产品规格书pdf
- 东芝TC7SH86F,LJ(CT产品规格书pdf
- THGBMJG6C1LBAIL东芝产品规格书pdf
- 东芝TLP351H(D4-TP1,F)产品规格书pdf
- TLP759(TP1,J,F)东芝TOSHIBA产品规格书pdf
- 2SC4213BTE85LF东芝TOSHIBA产品规格书pdf
- TK5A50D(STA4,Q,M)东芝产品规格书pdf
- TPH1R306PL,L1Q东芝TOSHIBA产品规格书pdf
- TOSHIBA_TK750A60F,S4X产品规格书pdf
- TOSHIBA_SSM6P39TU,LF产品规格书pdf
- SSM6P15FE(TE85L,F)东芝TOSHIBA产品规格书pdf
- TPN3R704PL,L1Q东芝TOSHIBA产品规格书pdf
- SSM6J214FE(TE85L,F东芝TOSHIBA产品规格书pdf
- TC58NYG0S3HBAI6东芝TOSHIBA产品规格书pdf
- TOSHIBA_TPN2R203NC,L1Q(M产品规格书pdf
- CRZ20(TE85L,Q,M)东芝TOSHIBA产品规格书pdf
- CRZ16(TE85L,Q,M)东芝TOSHIBA产品规格书pdf
- 运算放大器选型注意事项
- 美国微芯PIC18LF25K22-I/ML 管装产品规格书pdf
- 美国微芯DSPIC33FJ64MC804-E/PT 托盘产品规格书pdf
- PIC24EP512GU810-I/PF 托盘产品规格书pdf
- 美国微芯PIC16F84-04/P 管装产品规格书pdf
- 美国微芯PIC17C756A-33I/PT 托盘产品规格书pdf
- 美国微芯PIC18LF458-I/PT 托盘产品规格书pdf
- 美国微芯PIC18F4585-E/ML 管装产品规格书pdf
- 美国微芯PIC18F2221-I/SS 管装产品规格书pdf
- PIC24FJ128GA204-I/PT 托盘产品规格书pdf
- MICROCHIP(美国微芯)_PIC16LF15385T-I/MV 编带产品规格书pdf
- MICROCHIP(美国微芯)_PIC32MX150F128B-I/SO 管装产品规格书pdf
- 美国微芯PIC18F84J11-I/PT 托盘产品规格书pdf
- 美国微芯PIC18F23K22-E/SS 管装产品规格书pdf
- 美国微芯PIC16F18876-E/PT产品规格书pdf
- 美国微芯PIC24EP64GP204-I/PT 托盘产品规格书pdf
- 美国微芯PIC18F6520-E/PT 托盘产品规格书pdf
- DSPIC33FJ128GP306-I/PT 美国微芯托盘产品规格书pdf
- 美国微芯PIC18F27K40-I/SS产品规格书pdf
- 美国微芯PIC16F18875-I/PT产品规格书pdf
- 微芯PIC16F1512-I/MV 管装产品规格书pdf
- 美国微芯PIC24HJ32GP204-I/PT 托盘产品规格书pdf
- MICROCHIP(美国微芯)_PIC12LF1572T-I/MS产品规格书pdf
- MICROCHIP(美国微芯)_DSPIC33FJ16GS502-I/MM 管装产品规格书pdf
- MICROCHIP(美国微芯)_DSPIC33FJ128MC506A-I/PT 托盘产品规格书pdf
- MICROCHIP(美国微芯)_PIC10F206T-I/OT产品规格书pdf
- MICROCHIP(美国微芯)_PIC18F67K22T-I/PT 编带产品规格书pdf
- MICROCHIP(美国微芯)_PIC16C711-20I/P产品规格书pdf
- 微芯ATMEGA48PB-AU 托盘产品规格书pdf
- 微芯ATMEGA328PB-AN产品规格书pdf
- ATMEGA640V-8AU 托盘产品规格书pdf
- ATMEGA168PA-PU 管装产品规格书pdf
- AT89LP51RD2-20AAU产品规格书pdf
- ATXMEGA128D4-MH 托盘产品规格书pdf
- ATMEGA88A-MU 托盘产品规格书pdf
- ATMEGA48PB-MU产品规格书pdf
- AT91SAM7SE32-AU 托盘产品规格书pdf
- TC6321T-V/9U 编带产品规格书pdf
- DN2450K4-G 编带产品规格书pdf
- VN2410L-G 袋装产品规格书pdf
- AT30TS75A-SS8M-B 管装产品规格书pdf
- AT30TS750A-XM8M-T 编带产品规格书pdf
- EMC1001-AFZQ-TR 编带产品规格书pdf
- TC646BEOA 管装产品规格书pdf
- TC4468CPD 管装产品规格书pdf
- MIC5014YM-TR产品规格书pdf
- MCP6231UT-E/LT 编带产品规格书pdf
- MCP2021-500E/SN 管装产品规格书pdf
- MCP2561FD-H/SN产品规格书pdf
- MIC39100-2.5WS 管装产品规格书pdf
- MIC2005-0.5YM6-TR产品规格书pdf
- MIC2544-1YMM 管装产品规格书pdf
- MIC2091-1YM5-TR 编带产品规格书pdf
- MT48LC16M16A2P-75IT产品规格书pdf
- 24LC02B-E/SN 管装产品规格书pdf
- 25LC1024-I/P 管装产品规格书pdf
- 25AA640A-I/ST 管装产品规格书pdf
- 25LC080/SN 管装产品规格书pdf
- 93LC66B-E/SN 管装产品规格书pdf
- SST39SF040-70-4I-NHE产品规格书pdf
- SY100EPT21LKG 管装产品规格书pdf
- AT88SC018-SU-CM 管装产品规格书pdf
- MCP1316MT-46GE/OT 袋装产品规格书pdf
- MCP23016-I/SS 管装产品规格书pdf
- DSPIC33FJ128MC804-I/ML 管装产品规格书pdf
- ATSAML21E15B-AUT 编带产品规格书pdf
- PIC18LF4523-I/PT产品规格书pdf
- PIC24F04KA201-I/MQ 管装产品规格书pdf
- PIC16LF15385T-I/PT 编带产品规格书pdf
- ATXMEGA8E5-M4U 托盘产品规格书pdf
- AT89C2051-12PU 管装产品规格书pdf
- PIC32MM0064GPL036-I/M2 托盘产品规格书pdf
- DSPIC33FJ256GP710A-E/PF 托盘产品规格书pdf
- PIC24F16KL401-I/SS 管装产品规格书pdf
- ATSAMD10D14A-MUT 编带产品规格书pdf
- PIC32MZ1024EFG100-I/PT 托盘产品规格书pdf
- PIC24F04KA201-I/MQ 管装产品规格书pdf
- PIC16LF15385T-I/PT 编带产品规格书pdf
- ATXMEGA8E5-M4U 托盘产品规格书pdf
- AT89C2051-12PU 管装产品规格书pdf
- DSPIC33FJ256GP710A-E/PF 托盘产品规格书pdf
- PIC24F16KL401-I/SS 管装产品规格书pdf
- ATSAMD10D14A-MUT 编带产品规格书pdf
- PIC32MZ1024EFG100-I/PT 托盘产品规格书pdf
- 电流感应放大器INA300AQDGSRQ1的应用
- 低压差线性稳压器MIC5504-3.3YM5-TR技术参数
-
- 实时库存
-
- 元器件百科
-
- 检波器
- 环形激光器
- 电容传声器
- MII
- 焊接机器人
- 汽车连接器
- 输出端子
- nrf2401
- nrf24l01无线模块
- 无线测温传感器
- mpu6050
- ds1307
- SIMATIC控制器
- 数字控制器
- 无刷控制器
- 小规模集成电路
- 混合集成电路
- 转速开关
- 弱电面板开关
- 音频控制器
- 称量控制器
- Intel6264芯片
- 硬盘控制器
- 运动控制器
- SDN控制器
- PCF8591
- 液晶拼接控制器
- 太阳能热水器控制器
- 汽车空调控制器
- 平膜压力变送器
- 罗斯蒙特变送器
- 现场总线型变送器
- 管道压力变送器
- 无线压力变送器
- 栅极
- 74hc595
- TRIAC
- 电动车双模控制器
- 硬连线控制器
- 智能家居控制器
- 软件控制器
- 硬布线控制器
- 比例控制器
- 可控硅交流电力控制器
- 可控硅触发电路
- 12v5a电源适配器
- 恒流开关电源
- AT开关电源
- 备用电源
- 电源净化器
- 可控硅控制板
- 精密电位器的内部构造和功能用途
- 比例控制阀控制器的原理分析
- MSP43单片机端口介绍
- 电感式传感器的种类及应用
- 断路器的工作原理及主要特性
- 槽型光电开关的基础知识
- 控制器的主要功能
- 贴片电阻和插件电阻的区别
- 运动控制器的调试方法及优缺点
- 陶瓷电容器缺陷原因分析及解决措施
- 射频连接器的作用及性能参数
- 4G/5G无线PLC远程控制
- 轻松实现隔离式SPI通信
- Diodes CMOS频率缓冲器可提供低抖动、低偏差、低功耗三重效果
- 断路器的工作原理及主要特性
- 电源变压器的种类及特点
- 运行电容接线步骤及注意事项
- LTC6101CCS5电流感应放大器百科
- 安森美晶体管驱动器UC2843BD1R2G百科
- 电流传感器的应用和工作原理
- 电子元器件的封装有哪些?
- 隔离变压器的工作原理及作用
- 线性稳压器是什么?
- 微控制器的应用及其在现代工业中的重要性
- 圆柱形电池:现代科技中的重要能量储存工具
- 电阻与电容:电子电路中的黄金搭档
- 电感百科:深入探索电感的奥秘
- 二极管:电子世界的基石
- 晶体管:现代电子技术的核心
- 晶体管制造工艺的进步与革新
- 晶体管有哪些应用场景
- 晶体管有什么缺点
- 集成电路:科技之巅与未来之钥
- 连接器:现代科技中的隐形纽带
- 继电器百科
- 电源百科:深入了解电源的世界
-
- IC百科
-
- 厂商大全
-
- 电路图
-
- 光耦隔离是什么?一文了解光耦隔离
- 最简单的RC振荡电路图大全(十款最简单的RC振荡电路设计原理图详解) - 信号处理电子
- 简易信号发生器电路图大全(八款简易信号发生器电路设计原理图详解) - 信号处理电子
- 可控硅调速电路图大全(六款可控硅调速电路设计原理图详解) - 调速电路图
- 电热毯温控器电路图大全(八款电热毯温控器电路设计原理图详解) - 温控电路图
- 一种简易PWM温控风扇电路设计 - 调温电路图
- 单次脉冲发生器电路图大全(七款单次脉冲发生器电路设计原理图详解) - 信号处理电子
- ne555呼吸灯电路图大全(四款ne555呼吸灯电路设计原理图详解) - 555集成电路大全
- 温度控制器电路图大全(六款温度控制器电路设计原理图详解) - 温控电路图
- LM358运放方波转换为正弦波电路图分享 - 信号处理电子电路图
- 电子管音调电路图大全(六款电子管音调电路原理图详解) - 调功电路图
- 基本π网络之三电容电路和零极点分析 - 信号处理电子电路图
- 模拟电路之单极点电路 极点对不同频率小信号的反应 - 信号处理电子电路图
- 数显温控器电路图大全(五款数显温控器电路设计原理图详解) - 温控电路图
- lm358电子温控器电路图(五款模拟电路设计原理图详解) - 温控电路图
- 电流检测电路设计方案汇总(六款模拟电路设计原理图详解) - 信号处理电子电路图
- 霍尔元件电路图大全(四款霍尔元件常用的电路图) - 信号处理电子电路图
- 伺服电机编码器几根线 - 电工仪表电路图
- 可控硅调压器电路图大全(八款模拟电路设计原理图详解) - 调压电路图
- 220v双向可控硅电路图大全(八款模拟电路设计原理图详解) - 调功电路图
- ne555调光电路图大全(五款模拟电路设计原理图详解) - 555集成电路大全
- 太阳能路灯电路设计与仿真 - 太阳能电路
- 5v太阳能路灯电路图大全(四款5v太阳能路灯原理图详解) - 太阳能电路
- 太阳能路灯控制电路设计方案汇总(两款太阳能路灯控制电路原理图详解) - 太阳能电路
- ne555调温电路图大全(6款ne555调温电路) - 调温电路图
- 一拖三软启动器控制图(四款一拖三软启动器控制电路图) - 电工基础电路图
- 音箱三分频器电路图(四款模拟电路设计原理图详解) - 调功电路图
- 温度传感器设计方案汇总(二款温度传感器的设计方案) - 温度传感器电路
- 简易电子琴设计电路图大全(八款模拟电路设计原理图详解) - 消费类电子电路图
- 时序逻辑电路分析有几个步骤(同步时序逻辑电路的分析方法) - 数字电路图
- 555间歇式臭氧发生器电路图(四款臭氧发生器电路图详解) - 555集成电路大全
- 组合逻辑电路设计步骤详解(详细教程) - 数字电路图
- 三路遥控开关电路图大全(5款模拟电路设计原理图详解) - 遥控电路图
- 航模遥控开关电路图大全(4款模拟电路设计原理图详解) - 遥控电路图
- 基于VHDL的电子计时器的设计方法详解 - 定时器电路图
- 反相加法器电路与原理 - 数字电路图
- 计数报警器电路设计方案汇总(多款模拟电路设计原理图详解) - 报警电路图|报警器电路
- 超温报警器电路设计方案汇总(六款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 蜂鸣器报警器电路图大全(五款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 断水报警器电路设计方案汇总(四款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 红外线报警器电路设计方案汇总(八款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 声光报警器电路设计方案汇总(五款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 光控报警器电路设计方案汇总(四款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 555报警器电路原理图(八款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 燃气报警器电路图大全(六款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 人体感应报警器电路图大全(七款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 水位报警器设计电路图大全(八款模拟电路设计原理图详解) - 报警电路图|报警器电路图
- 单片机四位时钟电路设计方案汇总(四款电路图及程序分享) - 数字时钟电路图
- 定时器刷新详解(程序介绍) - 定时器电路图
- 温度报警器电路设计方案汇总(四款报警器电路原理图详解) - 报警电路图|报警器电路图
- 自动复位定时器电路图文详解 - 定时器电路图
- 数字时钟设计电路图汇总(七款数字时钟电路图) - 数字时钟电路图
- 简单数字钟仿真电路图大全(五款数字钟仿真电路图) - 数字时钟电路图
- 二极管开关电路汇总(多款电路设计原理分析) - 电子开关电路图
- 简易无线话筒电路图(七款无线话筒电路图) - 消费类电子电路图
- pwm调制原理同步调制_几种pwm调制方式介绍 - 信号处理电子电路图
- 无线话筒电路设计方案汇总(多款电路设计原理详细) - 消费类电子电路图
- 简单9018无线发射电路详解 - 消费类电子电路图
- 9018无线话筒电路图(四款无线话筒电路图) - 消费类电子电路图
- 1.5v电池无线话筒制作(六款无线话筒电路图制作) - 消费类电子电路图
- pwm双极性调制电路图_单极性与双极性PWM模式介绍 - 信号处理电子电路图
-
- 解决方案
-
- 利用TMS320 LF2407实现CAN总线通信
- 基于Compo Bus/D网络的环式给煤机集散控制系统
- 苹果手机屏幕上的圆点如何设置呢?
- 虚拟内存工作流程有哪些?虚拟内存工作原理介绍
- 明基黑锐丽屏大解密AMVA技术显示器全解析
- 如何将虚拟内存设置好呢?一文带你了解虚拟内存设置方法
- 什么是盎司?一盎司等于多少克?一盎司等于多少微米(铜厚)
- 汽车的EGR是什么意思?(废气再循环系统)
- 补偿导线是什么?补偿导线相关知识分析
- 如何正确开启手机USB调试?(华为手机)
- 什么是BNC接头?BNC接头的种类、用途与接法图解
- 锂电池型号命名含义
- 锂电池型号命名含义
- 什么是因果图?因果图的主要作用是什么?因果图分析
- 什么是馈线?馈线是什么意思?(馈线和联络线的区别)
- 什么是馈线柜?馈线柜的作用 -解决方案-华强电子网
- 什么是干簧管?干簧管的工作原理与应用
- 小米手机连接电脑有哪些方法?(两种方法)
- MSXML是什么?MSXML相关知识介绍
- 位图是什么?矢量图是什么?位图与矢量图的区别介绍
- 如何使用bt盒子种子搜索神器?五个步骤教你学会使用bt盒子种子搜索神器
- 什么是对等网络?对等网络(P2P)的特点与三大应用
- 什么是馈线?馈线是什么意思?(馈线和联络线的区别)
- 双向二极管起什么作用?
- 无线充电原理详解_电源技术
- 那些你可能不知道的贴片保险丝使用的注意事项!
- 看这里!一文告诉你如何挑选贴片保险丝
- 怎么清除浏览器缓存?教你如何清理(搜狗/360/chrome/IE)浏览器缓存文件
- TO-252封装的超快速恢复二极管
- 怎么样设置默认浏览器?(win7/win10设置默认浏览器的方法)
- 玻璃门地弹簧怎么调? 地弹簧安装方法以及调高低图解
- 笔记本电脑连不上无线网怎么回事 学会排除故障
-
- 常见问题
